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SUMMARY 

The aims of this paper are threefold: to increase the level of awareness within the shock-capturing 
community of the fact that many Godunov-type methods contain subtle flaws that can cause spurious 
solutions to be computed; to identify one mechanism that might thwart attempts to produce very-high- 
resolution simulations; and to proffer a simple strategy for overcoming the specific failings of individual 
Riemann solvers. 
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1. INTRODUCTION 

Over recent years a plethora of shock-capturing schemes have been developed for the Euler 
equations of gas dynamics. During this period it has emerged that one of the more successful 
strategies for designing a shock-capturing scheme is to follow Godunov’s lead’ and utilize a 
classic initial value problem known as a Riemann problem.2 Godunov assumed that a flow 
solution could be represented by a series of piecewise constant states. Thus the numerical 
representation closely approximates the true solution near discontinuities, and regions of smooth 
flow are reasonably well approximated by a series of step functions. He evolved this discretized 
flow solution by considering the non-linear interactions between its component states. Viewed 
in isolation, each pair of neighbouring states constitutes a Riemann problem, the solution to 
which may be found e ~ a c t l y . ~  The results from these separate Riemann problems may then be 
averaged so as to advance the flow solution through some time increment. Because it mimics 
much of the relevant physics, Godunov’s scheme results in an accurate and well-behaved 
treatment of shock waves. 

Although it provides the bedrock upon which most modern schemes are built, in its original 
form Godunov’s method is of limited use. Firstly, the scheme proves to be highly dissipative 
and so requires an inordinately fine mesh to resolve complex shock-on-shock interactions. 
Secondly, since a Riemann problem has no closed form solution and can only be solved by 
some iterative method, Godunov’s scheme is significantly more expensive than schemes which 
employ ordinary finite difference operators. 

One of the first people to address this second shortcoming was Roe.’ He argued that since 
the Riemann problems associated with Godunov’s method arise from an approximation of the 
data, it might be sufficient to find only approximate solutions to these Riemann problems, 
provided that they still describe important, non-linear behaviour-his motivation being that 
approximate solutions can be computed much more cheaply than exact solutions. Thus the 
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industry of designing approximate Riemann solvers was born.”7 Now, whilst Godunov-type 
schemes are often held up to be models of robustness, they can on occasions fail quite 
spectacularly. For example, when computing shock reflection problems, Roe’s method can 
sometimes go awry by admitting solutions for which the Mach stem is inexplicably kinked. The 
existence of such failings partly explains why no consensus of opinion has been reached 
concerning the ideal Riemann solver. Whenever a new failing is unearthed, it adds fuel to the 
great Riemann solver debate: method X is better than method Ybecause of reasons A,  B and 
C .  It is our contention that for all the current crop of Riemann solvers at least one set of 
circumstances may be found for which any one solver is found wanting; some failings are just 
more visible than others. 

In Section 2 we catalogue a number of situations in which anomalous behaviour is known 
to occur. This catalogue should serve to increase the general level of awareness within the 
shock-capturing community of the current limitations of Riemann solver technology. At present 
this awareness is not all that it should be: there are many instances in the literature where 
suspect numerical results are presented with either little or no adverse comment. We believe 
that one of the failings listed in our catalogue has hitherto gone unreported. In Section 3 we 
proffer a diagnosis of the mechanism which causes this new failing. 

At this juncture it should be noted that any foibles that a specific Riemann solver might have 
may usually be controlled by the judicious use of a small amount of artificial dissipation. Indeed, 
it is worth pointing out that Colella and Woodward’s PPM scheme,* which has proved itself 
to be more robust than most Godunov-type schemes, does in fact employ an elaborate artificial 
dissipation mechanism to supplement the dissipation provided via upwinding. As will be 
described in Section 4, we favour a strategy whereby the weaknesses of any one solver are 
overcome by combining it with one or more complementary solvers. The main advantages of 
this approach over that of adding artificial dissipation are twofold. Firstly, it does not degrade 
the resolution of the base Riemann solver; it is possible to control certain instabilities by changing 
the flavour of the dissipation mechanism rather than increasing the absolute level of dissipation. 
Secondly, it does not necessitate a host of tunable parameters and so this synergetic strategy 
does not negate the principal advantage of Godunov-type schemes over other shock-capturing 
methods. Of course, we are left with the difficulty of deciding when to use one Riemann solver 
in preference to another; however, we present a number of computations which suggest that 
this difficulty is not particularly bothersome. 

Finally, in Section 5 we list the main conclusions that we have drawn from this work. 
Note that in this paper we do not address the first shortcoming of Godunov’s method, 
namely its low resolution. Following van Leer,’ it is assumed that a high-order extension to a 
first-order method can always be achieved by preprocessing the data supplied to the Riemann 
solver. 

2. A CATALOGUE OF FAILINGS 

We now present several instances where various Ricmann solvers are known to give unreliable 
results. While most of these cases will be known to the aficionado, we believe that one of the 
cases which we are about to describe has hitherto gone unreported in the literature. Although 
our catalogue is not exhaustive, we hope that it might save some investigators from the harrowing 
experience of spending weeks or even months searching for coding errors that simply do not exist. 

All the computational results shown in this section are for first-order schemes. Since such 
methods have low resolution, our calculations employed relatively fine meshes; for clarity, grids 
are drawn using every other fourth grid line. 
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2.1. Expansion shocks 

By far the most widely investigated failing is that some Riemann solvers do not satisfy an 
'entropy condition', such schemes can admit non-physical solutions such as expansion shocks. 
Osher4 has found a general condition for a scheme to be entropy-satisfying when applied to 
scalar equations and he designates such schemes E-schemes. At present, however, any extension 
to a system of equations contains a large amount of empiricism and must therefore remain 
suspect. Indeed, Godunov's method is classified as an E-scheme but, as observed by Woodward 
and Colella,lo it can give rise to nearly discontinuous expansion fans near sonic points. The 
density contours shown in Figure 1 illustrate this deficiency of Godunov's method quite clearly. 
These results are taken from the diffraction of a strong shock wave, M ,  = 5.09 with y = 1.4, 
around a 90" corner. 

In its basic form Roe's scheme is another solver that admits expansion shocks; however, 
several fixes have been proffered which cure Roe's scheme of this particular Such 
fixes are typical of the way in which Riemann solver deficiencies have been countered up to 
now. Whilst this strategy has proved reasonably successful, it has a number of drawbacks. 
Sometimes a fix uses a parameter which must be retuned between problems and hence one of 
the major advantages of Riemann-based schemes over, say, artificial dissipation schemes is lost. 
Alternatively, a scheme may require more than one fix and it may be unclear how the different 
fixes interact with one another. 

2.2. Negutive internal energies 

Another situation in which some Riemann solvers are found wanting occurs whenever the 
dominant energy mode is kinetic rather than thermal. For such solvers the kinetic energy 
computed from a numerical approximation to the conservation laws of mass and momentum 
can exceed the total energy computed via an approximation to the conservation law of energy. 
Thus they can yield negative internal energies and hence negative pressures, which cause the 
scheme to fail. Einfeldt et ~ 1 . ' ~  call any scheme which can be guaranteed not to yield negative 

Figure 1 .  A strong shock diffracting around a corner gives rise to an expansion shock: (a) density contours; (b) 
computational grid 
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pressures ‘positively conservative’. They have shown that while Godunov’s scheme is ‘positively 
conservative’, the reverse is true for any Godunov-type scheme based on a linearized Riemann 
solver. Indeed, the basic form of Roe’s scheme is unable to cope with the test problem shown 
in Figure 1 ; the strength of the diffracting shock is sufficient to cause a negative pressure to be 
computed near the apex of the corner. Roe’s scheme may be made ‘positively conservative’ by 
modifying its wave speeds; in essence, the scheme is made more dissipative by increasing the 
spread in velocity between the two acoustic waves.” 

2.3. Slowly moving shocks 

Since shock-capturing schemes do not resolve the internal structure of a shock wave, no 
physical significance can be attached to the discrete shock structure produced by a numerical 
scheme. Methods are built upon the premise that shock profiles are monotone; the precise 
structure comes about as a matter of course and is not preordained. Unfortunately, Roberts has 
shown that the nature of the shock structure produced by a particular scheme can have a large 
bearing on how well the scheme copes with slowly moving shock waves.I4 Godunov-type 
methods fare quite badly in this respect: as the shock moves relative to the mesh, the shock 
profile flexes, perturbing the supposedly passive characteristic fields as it does so. 

Figure 2 shows a snapshot of the shock profile produced by Einfeldt’s HLLE scheme6 taken 
from the simulation of a shock wave which is moving slowly from left to right; the pre-shock 
state (density, velocity, pressure) is (1, -3.44, 1) and the post-shock state is (346, -0.81, 10.33). 
Note that for a Courant number of one it takes 50 time steps for this shock to traverse one 
mesh cell. The low-frequency perturbations observed in this figure are produced to a greater or 
lesser extent by any scheme which attempts to ‘recognize’ a shock wave. For fast moving shocks 
the post-shock noise will be of a much shorter wavelength than is the case here and will be 
effectively damped by the dissipation of the scheme. Roberts reports that Osher’s schemei5 does 
not produce low-frequency noise for slowly moving shocks, since it never connects two adjacent 
states by a shock, and he concludes that there may be advantages to using flux formulae that 
do not recognize the analytic shock jump conditions. 

Another situation where the perturbation of a shock from its preferred profile results in 
perturbations on the passive characteristic fields occurs whenever a shock crosses a discontinuity 
in mesh spacing.16 However, in this case sizeable perturbations may occur whatever the speed 
of the shock. 

I* Mesh Cell 

Figure 2. Low-frequency, post-shock oscillations occur for slowly moving shock waves 
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2.4. The carbuncle phenomenon 

Several authors have by now reported a failing of Roe’s scheme which has been dubbed the 
‘carbuncle phen~menon.’”-’~ For steady state, blunt body calculations Roe’s scheme sometimes 
admits a spurious solution in which a protuberance grows ahead of the bow shock along the 
stagnation line. It appears that this effect is more pronounced the more closely the grid is aligned 
to the bow shock. Also, a carbuncle is more likely to appear for high-Mach-number flows than 
for low-Mach-number flows. Figure 3 shows such a spurious solution; here the freestream Mach 
number was taken to be 10. Note that along the stagnation line the bow shock is almost perfectly 
aligned with the grid. Consequently, parallel to the shock Roe’s scheme will not add any 
dissipation via the contact and shear waves to counteract perturbations that appear through 
the acoustic waves; this appears to be a recurring theme whenever Roe’s method fails. It is 
interesting to note that if Harten’s entropy fixt3 is applied to the contact and shear waves, any 
shortcoming of Roe’s scheme is invariably cured. However, there is no justification, either 
physical or mathematical, for applying this fix to these waves; it is just a convenient method 
for introducing an amount of artificial dissipation into the scheme. 

Figure 3. The carbuncle phenomenon: (a) density contours; (b) computational grid 
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2.5. Kinked Much stems 

During the course of developing a mesh adaptation scheme, we encountered a failing of Roe’s 
scheme which is not dissimilar to the ‘carbuncle phenomenon’.16 When the reflection of a plane 
shock wave from a ramp lies in the double-Mach reflection regime, the principal Mach stern is 
sometimes inexplicably kinked. Figure 4 shows a snapshot of the pressure contours taken during 
the reflection of a plane shock, M ,  = 5.5 with y = 1.4, from a 30” ramp. The principal Mach 
stem is so severely kinked that it has given rise to a spurious triple point. Similarly strange 
results have been produced by Sawada” and Itoh et u1.” As before, because of the way the 
Mach stem is aligned with the grid, there is probably insufficient dissipation added via 
the contact and shear waves to counteract perturbations that appear via the acoustic waves. 

2.6. Odd-Even decoupling 

By far the most insidious failing that we have come across has, we believe, gone unreported 
in the literature. During the course of producing very-high-resolution simulations, we have 
noticed a tendency for odd-even decoupling to occur along the length of planar shocks which 
are aligned with the mesh (for an example see Figure 11). Of the Riemann solvers that we have 
at our disposal, this failing afflicts an exact solver,” Roe’s solver and Toro’s linearized solver.’ 
We emphasize the fact that this phenomenon only becomes apparent for very-high-resolution 
simulations which suffer some systematic perturbation. However, as will be shown below, the 
required perturbation can arise quite innocuously, so we suspect that this failing will prove fairly 
widespread once very-high-resolution simulations become commonplace owing to increases in 
computer power. 

Now since we obtain our high grid resolution by means of a fairly complex mesh adaption 
scheme,16 it seemed reasonable to suppose that this o d d w e n  decoupling was attributable to 
some coding error, but an exhaustive search for such an error proved fruitless. Subsequently we 
have managed to reproduce this failing in a more controlled manner, as has a colleague using 
an independent so we have little doubt that this tendency for odd-even decoupling to 
occur constitutes a genuine failing rather than being the manifestation of some deficiency of our 
code. That said, our adaptive mesh scheme clearly exasperates this failing. In the next section 

Figure 4. The principal Mach stem arising from the reflection of a plane shock from a ramp is inexplicably kinked: (a) 
pressure contours; (b) computational grid 



THE GREAT RIEMANN SOLVER DEBATE 561 

we shall present a possible diagnosis of the mechanism which causes this mode of failure; here 
we merely present the evidence that it exists. 

Figure 5 shows several snapshots of the density contours from the simulation of a plane 
shock wave, M ,  = 6 with y = 1.4, propagating down a duct. For this calculation we have used 
Roe’s scheme together with a nominally uniform grid of 20 x 800 cells with unit spacing, the 
centreline of which is perturbed from that of a perfectly uniform mesh in the following manner: 

k;.,,,id + for ieven, 
?,,,id - for i odd. 

y . . .  = bjmld 

This perturbation to the grid centreline promotes odd-even decoupling along the length of the 
shock. Note that the shock has propagated some 15 channel widths before the decoupling first 
becomes apparent; see frame (b). For this point in the calculation Figure 6 shows a series of 
slices across the duct, for both the density and pressure fields, as one moves from the head to 
the foot of the shock. Interestingly, within the shock the decoupling of the pressure field is out 
of phase with the decoupling of the density field. As the shock continues to propagate down 
the duct, so the decoupling becomes progressively worse, until the shock breaks down completely. 

(a) X ,  -270 (b) X ,  n. ROO 

( c )  X ,  x 330 (d)  X ,  Y 360 

(e) X ,  % 420 ( f )  X ,  -480 

Figure 5. Odd-even decoupling occurs for a shock propagating down a duct 
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However, at no stage in the calculation does the code blow up in the sense that it generates a 
floating point exception; it simply goes astray. 

3. ODD-EVEN DECOUPLING-A DIAGNOSIS? 

As yet, the tools do not exist that would allow us to perform a rigorous non-linear stability 
analysis for some shock-capturing scheme applied to the Euler equations. However, it is possible 
to examine the way in which a scheme evolves certain sets of prescribed data so as to ascertain 
its likely stability characteristics. Since some Riemann solvers allow odd-even decoupling to 
develop along the length of a plane shock, it might prove fruitful to examine how different 
schemes evolve sawtooth-type initial data. To this end we consider the one-dimensional Euler 
equations with a passive component of shear velocity: 

The quantities p, p, u, u and E are density, pressure, the passive shear component of velocity, 
the velocity in the y-direction and the total energy per unit volume respectively. For a perfect gas 

where y is the ratio of specific heats. We assume that the computational mesh is uniform, with 
mesh spacing Ay, and that the discrete solution at time t" is given by 

p; = p + p ,  P; = P + $ 9  u; = u, u; = 0 (2) 

if j is even and by 

pj" = p - f i n ,  p;  = p - p, u; = u, u; = 0 

i f j  is odd. Here j" and j3" are the amplitudes of the sawtooth profiles for the density and pressure 
fields respectively. We shall consider two schemes which may be expressed in the form 

where W is the conserved variable vector (p,  pu, pv, E)T and G;+ 1/2 is a first-order flux function 
computed from the states W; and Wj"+ '. 

3.1. Roe's scheme 

Using Roe's scheme,' the interface flux for the system of equations (1) may be written as 

Gj"+1/2 =%Gj" + Gjn+i) - +  1 a ~ ~ 1 , 1 2 I I ~ ~ i l / ~ l e j k ! 1 , 2 ,  

k = 4  

k =  1 
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where the wave speeds { A ( k ) } ,  wave strengths {d”’) and eigenvectors {e(k)) are given by 

2‘” = v“ - fi, 1‘2’ = v“, 1‘3’ = 6, A(4) = v“ + 5, 

Here quantities written as (:) are the so-called Roe-averaged quantities, ii and are the 
Roe-averaged sound speed and total enthalpy respectively and A(.) represents the forward 
difference operator (.)j+ - (.)j. Now for our chosen data 

(‘)j+ 1/2 = F)j- 1/23 A(.)j+ 112 = -A(.)j- 1/2.  

Therefore 

k = 4  k = 4  1 ~$1 112 1 A)? 112 I ey) 1,2 = - 1 ayi 1/2 I l$kl ,2 1 e$k! 
k =  1 k =  1 

Also G;- ,  = G;, so the evolution scheme (3) may be written as 

which can be simplified to 

w;+l=w7+vy-(;), Ap ii2 u’ 

where vy is the Courant number iiAtlAy. Recognizing that W; may be expressed as 

B”/(r - 1) + (u2/2)b” 

and that by definition 

equation (4) may be manipulated to give 

(4) 

8 ” + 1 =  8” - 2 B”, B”+l = B”(1 - 2VJ 
a 
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From this it can be seen that the initial perturbation to the pressure field is damped provided 
that the CFL condition is met, i.e. 

v y  I 1. 

However, the form of the evolution for the density perturbation exposes a flaw in Roe's scheme; 
the density perturbation is fed directly from the pressure perturbation. Making the loose 
approximation that 6 remains constant, for a one-off disturbance (b', 8') we have 

Thus 

+(1 - 2 V J  - '1 

Therefore if 8' is of opposite sign to i0, then for a one-off disturbance /j will grow but remain 
bounded; but if the pressure field is continuously perturbed in a systematic manner, no matter 
how small the pressure perturbations, $ will grow without bound, albeit slowly. For two- 
dimensional calculations, although we cannot prove it, we suspect that a strong shock wave 
moving normal to the y-direction provides this systematic perturbation. 

Firstly, it is interesting to note that the failing reported in Section 2.6 is only observed for 
strong shocks. For a strong shock wave it seems reasonable to suppose that Iflo/ii2 I is more likely 
to be larger than Ij?'l than would be the case for weak shocks. Thus even if 6' and fl' are 
initially of the same sign, they need not remain so; see (5 ) .  Now consider frame (b) of Figure 5 
and the associated profiles shown in Figure 6. Within the shock the odd-even decouplings of 
the pressure and density fields are indeed out of phase with one another, which is consistent 
with the observations made above. Such behaviour will cause the local sound speed to vary 
along the length of the shock and its profile will exhibit a sawtooth perturbation which is in 
phase with that of the pressure field. Consequently, the individual segments of the shock will be 
moving alternately faster and slower than the nominal shock speed. Such movements will 
exaggerate the sawtooth perturbation to the pressure field along the length of the shock, but 
diminish that for the density field. The increased pressure perturbations will then promote an 
increase in the density perturbations as detailed above, and so the whole process repeats itself. 

Since there are two competing processes that affect the density perturbations, namely the 
relative movements of the shock and the decoupling along the length of the shock, we cannot 
categorically state that Roe's method is bound to break down. However, the weight of numerical 
evidence suggests that at least for strong shocks Roe's scheme will break down in the manner 
described here. Given our arguments, it should come as no surprise that Godunov's method 
also exhibits a tendency to allow odd-even decoupling to occur along the length of a strong 
shock wave. Since it is the sweep parallel to the shock that primarily causes the instability, the 
differences between using an exact Riemann solver and Roe's linearized solver for data that are 
nominally uniform should have little bearing on the growth of the instability. 

Finally, before moving on, it should be noted that none of the popular entropy fixes which 
are applied to Roe's scheme cures this particular failing, except for the case where Harten's fix 
is applied to the shear and contact waves.* Simply altering the acoustic wave speeds can have 

* To reiterate the comment made in Section 2.4, applying Harten's entropy fix to the linearly degenerate wave fields 
has no  mathematical or physical justification, but is merely a convenient way in which to add an amount of artificial 
dissipation. 
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no affect; because of the symmetry of the data, both waves will be changed by the same amount 
and so the problem will persist. Also, moving to a high-order version of Roe’s scheme will not 
improve matters, because the odd+ven decoupling will cause a high-order flux function to drop 
to the first-order function. 

3.2. Einfeldt ‘s HLLE scheme 

For Einfeldt’s HLLE scheme6 the interface flux function is given by 

where 

b(+) = max(0, v j +  + aj+ 1), b ( - )  = min(0, Aj!21/2,  v j  - aj) 

and 1“’ and 
( 7 ) j +  liz is equal to ( y ) j -  

are the two acoustic wave speeds from Roe’s method. Now for our chosen data 
therefore 

bjt ) l /2  = -b(.-) , - I 1 2  w Z, bjy)1/z = -b;?)l,Z w -Z. 

Using these signal weightings, it may be found that 

p+1 = (1 - 2vy)P, B “ + l  = (1 - 2vy)B”, 

where 

ZAt 
v y  W -- 

AY 

From this it can be seen that both the density and pressure perturbations are damped provided 
that the CFL condition is satisfied. Just as important, however, is the fact that the pressure 
perturbation does not feed into the density perturbation, so we would not expect the HLLE 
solver to exhibit the o d d w e n  decoupling that afflicts both Roe’s scheme and Godunov’s scheme; 
numerical experimentation confirms this expectation. 

It is our contention that any scheme for which it can be shown that the perturbation to the 
pressure field feeds the perturbation to the density field will be afflicted by the o d d w e n  
decoupling shown in Figure 5. Thus it comes as no surprise to find that Toro’s linearized 
Riemann solver’ is afflicted by this failing, but Liou and Steffen’s AUSM scheme” is not. The 
way is now open for some mathematician to perform a more rigorous analysis than we are able, 
so as to shed additional light on the mechanism which causes this particular failing. 

4. AN ADAPTIVE RIEMANN SOLVER 

Having exposed many of the weaknesses of Riemann solvers, we now present a simple strategy 
that we have found useful for improving the robustness of Godunov-type schemes. In essence, 
we select the precise flavour of upwinding to match the local flow data such that a particular 
Riemann solver is only employed in those situations where it is known to give reliable results. 
By recognizing the limitations of any one solver, it is possible to reap its advantages without 
suffering its attendant failings. 
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Our synergetic strategy has a number of attractions, not least of which is that some favoured 
solver need not be jettisoned simply because it occasionally fails. However, it does introduce 
the difficulty of how to decide when to use one Riemann solver in preference to another. It has 
been our experience that this added difficulty is not particularly bothersome, since we tend to 
combine a single high-resolution Riemann solver with just one or two other solvers that prove 
more reliable under conditions which are fairly well defined, and so a set of ad hoc switching 
functions suffice. For example, some of the worst failings of Riemann solvers occur in the vicinity 
of strong shock waves. To overcome such failings, we employ Einfeldt’s HLLE scheme. Now it 
makes little sense to chop and change the choice of Riemann solver used along the length of a 
shock wave, since to do so would inevitably perturb a planar shock front. Hence we apply this 
particular Riemann solver throughout the immediate vicinity of a strong shock. Thus the HLLE 
switching function need only locate the position of a shock wave, but such functions already 
exist in the guise of mesh refinement monitor functions. 

A simple test that identifies those cell interfaces which are in the vicinity of a strong shock is 
to check whether or not 

where a is some threshold parameter which is problem-dependent and pr and pi refer to the 
pressures which act on the interface. If this condition is met, the two cells separated by the 
interface are flagged as lying within a strong shock. Thus when it comes to computing 
cell-interface fluxes, if the cells either side of an interface are both flagged as lying within a 
strong shock, the flux is computed using the HLLE solver. Note that since numerical shocks 
are invariably smeared over several mesh cells, it is worth locating shocks using a projection of 
the flow solution on a grid which is coarser than that used for the calculation. On such a grid 
a shock will appear much less smeared and so the left-hand side of the above switching function 
will be a fair indication of its strength. Once a set of cells have been flagged on this coarse mesh, 
the flags may be prolongated to the actual computational mesh so as to find those cells which 
lie in the vicinity of a shock wave. 

Before proceeding further, several observations should be made. Firstly, although the HLLE 
solver is adjudged to be a low-resolution scheme, it does in fact resolve isolated shocks as well 
as an exact Riemann solver does. Consequently, using this robust solver in the vicinity of strong 
shock waves does not necessarily pollute a scheme’s resolution, as would be the case if artificial 
dissipation were used to augment the dissipation provided via upwinding. For many inviscid 
calculations the amount of pollution proves to be negligible, and whilst some degradation would 
be expected for the case of a strong shock interacting with a boundary layer, it may well be 
unnecessary to employ the HLLE solver in such a situation because of the extra dissipation 
provided by the real viscous terms. Secondly, although the HLLE switching function requires 
a tunable parameter a, the retuning of this parameter is less involved than the retuning of an 
artificial dissipation mechanism; in general, it is far simpler to determine where extra dissipation 
should be added than it is to determine how much extra dissipation to add. For many problems, 
assuming that shocks are located as described above, a sensible threshold on the shock strength 
can be specified a priori. Lastly, it should be noted that our strategy of switching Riemann 
solvers may not prove suitable for those implicit schemes which require that the numerical flux 
function be differentiable. 

Figure 7 shows how the HLLE solver may be used to correct the tendency of Roe’s scheme 
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Figure 7. The HLLE scheme can be used to circumvent the tendency of Roe’s method to produce kinked Mach stems: 
(a) pressure contours; (b) HLLE switching function 

to produce kinked Mach stems (cf. Figure 4). For this calculation the HLLE switching function 
was tuned such that it would only be activated by the incident shock and the principal Mach 
stem; Q was simply set to half the strength of the incident shock. Note that apart from 
the region near the Mach stem, these new results are very similar to the old ones. This 
shows that the HLLE scheme has had no adverse affect on the resolution of Roe’s 
scheme. Similarly, Figure 8 shows how the carbuncle phenomenon may be circumvented 
(cf. Figure 3). Here we have restricted the HLLE solver to cells near the stagnation line in order 
to demonstrate how localized the failing of Roe’s scheme really is. In practice, however, we 
would advocate using the HLLE scheme along the whole length of the bow shock so as to 
maximize robustness without compromising resolution. Again a sensible value of a can be found 
a priori by using some large fraction of the shock strength along the stagnation line, which can 
be estimated, given the freestream Mach number, by assuming that the flow is locally one- 
dimensional. As shown in Figure 9, the HLLE solver may also be used to good effect to prevent 
Godunov’s scheme from admitting expansion shocks (cf. Figure 1). Here we have employed 
the HLLE solver along the sonic line and in regions where the expansion waves are 
strong. 

Having presented the gist of our strategy, we see little point in trying to sell a particular 
combination of solvers. Starting with some high-resolution Riemann solver, whose choice will 
inevitably be a matter of personal taste, the correct combination of solvers will depend both on 
that scheme’s weaknesses and on the specific application in hand. In turn, the combination of 
Riemann solvers will dictate the choice of switching functions. Therefore we shall resist the 
temptation to recommend a specific course of action; instead, we present two simulations that 
show how an adaptive Riemann solver might be used to good effect. Briefly, both simulations 
were done using the two-dimensional analogue of the one-dimensional Euler equations given 
in Section 3. These equations were integrated using the two-step, finite volume scheme which is 
attributable to H a n ~ o c k . ~ ~  This scheme employs van Leer’s MUSCL approach’ to achieve a 
second-order extension to Godunov’s method; hence different Riemann solvers may be slotted 
directly into the scheme so as to vary the flavour of the upwinding. Although the calculations 
were performed using an adaptive mesh a l g ~ r i t h m , ’ ~ . ~ ~  the mesh refinement monitor function 
was such that the calculations employed a nominally uniform Cartesian mesh. 



Figure 8. The HLLE scheme can be used to circumvent the carbuncle phenomenon: (a) density contours; (b) HLLE 
switching function 

Figure 9. The HLLE scheme can be used to prevent Godunov’s method from producing expansion shocks: (a) density 
contours; (b) HLLE switching function 
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Our first example concerns the simulation of a strong shock wave diffracting around a 90" 
corner; the shock Mach number and the ratio of specific heats are 5.09 and 1.4 respectively. We 
have computed this test problem using a combination of three different Riemann solvers: Toro's 
linearized Riemann solver was used to perform the MUSCL reconstruction step of Hancock's 
scheme as described by Quirk,2s and the upwinding step was performed by adaptively selecting 
between Roe's solver and the HLLE solver. The parameter c1 used by the switching function (6) 
was set to unity so as to limit the HLLE solver to the incident and diffracted shock fronts and 
to a small region near the apex of the corner. Figure 10 shows a schlieren-type snapshot taken 
from this simulation. The different shades of grey depict the magnitude of the gradient of the 
density field; the darker the shade, the larger the magnitude; details of this shading procedure 
are given in Appendix A. Here it is not our intention to assess the accuracy of these results; the 
interested reader may do this using the experimental results of Bazhenova et a1.26 and the 
computational results of Hillier.27 Instead, we wish to illustrate the fact that certain Riemann 
solver failings, if left unaddressed, can place an upper limit on the resolution of simulations that 
may be performed. 

Consider the consequences of disabling the HLLE switching function so that Roe's solver 
alone is used for the upwinding stage of Hancock's scheme. The tendency of Roe's solver to 
allow odd-even decoupling to occur along a planar shock wave which is aligned with the grid 
will sooner or later cause this simulation to come to grief (see Figure ll), thus precluding the 
possibility of performing very detailed simulations. By way of comparing the resolution of these 
two sets of results, for Figure 10 there are 560 mesh cells from the apex of the corner to the 
point where the Mach stem meets the wall, while for Figure 11 there are only 120 cells. The 
question of whether or not our adaptive mesh algorithm contains some flaw which exasperates 
the o d d w e n  decoupling is largely academic. The fact remains that Roe's solver is susceptible 
to this mode of failure whereas the HLLE solver is not. Whether the initial stimulus comes from 
a distorted mesh as in Section 2 or from some component of the mesh adaption scheme as seems 
likely here is immaterial. 

Figure 10. A schlieren- type snapshot from the diffraction of a strong shock wave around a 90" degree corner 
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Figure 11. On its own, Roe’s approximate Riemann solver cannot be used to reproduce the resolution of the simulation 
shown in Figure 10 

So as not to leave the impression that the above shortcoming is somehow peculiar to Roe’s 
method, we present a second set of results which are taken from the interaction of a planar 
shock wave with a half-diamond; the shock Mach number is 2.85, the ratio of specific heats is 
1.4 and the angle a t  the apex of the diamond is 90”. As before, we have run this test problem 
using a combination of three different Riemann solvers, but this time we have substituted an 
exact Riemann solver” in place of Roe’s linearized solver. Figure 12 shows a schlieren-type 
snapshot from this calculation; note that some 800 cells cover the width of the diamond, so this 
calculation is well resolved. Also, as an aside, we note that the quality of these results may be 
gauged by comparing them with the experimental results given by Glass er aL2* Once again, if 
the HLLE switching function is disabled, the simulation is ruined by the odd+ven decoupling 
that occurs along the length of the incident shock (see Figure 13). Note that this second 
calculation is of lower resolution than the first; only 400 cells cover the width of the diamond. 

In this section we have attempted to show that the robustness of Godunov-type schemes may 
be improved by employing an adaptive Riemann solver, where the specific flavour of upwinding 
is altered to suit the local flow conditions. If used sensibly, this strategy can overcome most 
known failings of individual solvers. Despite our efforts, we recognize that the majority of 
shock-capturing practitioners will continue to use artificial dissipation as a band aid to fix a 
particular Riemann solver at the first signs of any failing, simply because it is expedient to do 
so. Whilst we find this approach disappointing, the principal aim of this paper is to emphasize 
the fact that most of the Riemann solvers that are in common use must be augmented in some 
way if they are to be used for the purpose of producing genuinely high-resolution simulations 
of shock hydrodynamic phenomena. 
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Figure 12. A schlieren-type snapshot from the interaction of a planar shock wave with a half-diamond 

Figure 13. On its own, an exact Riemann solver cannot be used to reproduce the resolution of the simulation shown 
in Figure 12 
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5. CONCLUSIONS 

Unless the dissipation provided via upwinding is augmented by some other mechanism, any 
Godunov-type scheme built upon a single Riemann solver will probably be flawed. For example, 
when subjected to some small but systematic form of perturbation, most popular Riemann 
solvers for the Euler equations, including the exact solver, cannot prevent o d d w e n  decoupling 
occurring along the length of a strong shock wave which is aligned with the computational 
mesh. Thus far, this flaw has gone largely unnoticed simply because it is only exposed by 
very-high-resolution simulations. However, given that the required perturbations can arise quite 
innocuously, this mode of failure should prove fairly widespread once genuinely high-resolution 
simulations become commonplace owing to increases in computer power. 

Although most flaws can be controlled by the judicious use of a small amount of artificial 
dissipation, to do so necessarily leads to a reduction in the resolution of the scheme. We favour 
an alternative approach whereby the failings of any one Riemann solver are circumvented 
by combining it with one or more complementary solvers. In essence, we advocate selecting the 
precise flavour of upwinding to suit the flow data. Admittedly, this synergistic strategy is not 
as aesthetically pleasing as having a single Riemann solver for all occasions, but we have shown 
that it can be made to work quite effectively; besides which, Riemann solvers are sometimes 
touted as being a solution-adaptive technique, so the concept of an adaptive Riemann solver is 
not that contrived. 

Looking to the future, it is to be hoped that genuinely multidimensional Riemann solvers will 
overcome many of the shortcomings of today’s dimensionally split schemes. However, given the 
way in which the present shortcomings have been stumbled across, these multidimensional 
schemes may themselves arrive complete with subtle failings with which to ensnare the unwary. 
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APPENDIX: SCHLIEREN-TYPE PLOTS 

The plots shown in Figures 10 and 12 depict the magnitude of the gradient of the density field, 
namely 

and hence they may be viewed as idealized schlieren images. So as to accentuate weak flow 
features, the following non-linear shading function has been used: 

shade = exp( - k$). 

Here k is a constant and $ is a weighting function given by 

IVPI - IVPIO 
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where 
IVPIO = k o l V P l m a x ,  l V P l 1  = k l l V P l m a x ,  

ko and k, being constants. Note that shade is limited to values between 0 and 1, so for a 24-bit 
colour graphics system the grey level shade may be converted to an ( R ,  G ,  B )  triplet using 

(255 * shade, 255 * shade, 255 * shade). 

For both figures the constants k,  k ,  and k ,  were set to 5, 0.05 and -0.001 respectively. 
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